α1B -Adrenoceptor signalling regulates bone formation through the up-regulation of CCAAT/enhancer-binding protein δ expression in osteoblasts.

阅读:11
作者:Tanaka Kenjiro, Hirai Takao, Kodama Daisuke, Kondo Hisataka, Hamamura Kazunori, Togari Akifumi
BACKGROUND AND PURPOSE: The sympathetic nervous system regulates bone remodelling, in part, through ß2 -adrenoceptor signalling. However, the physiological role of α1 -adrenoceptor signalling in bone in vivo remains unclear. Therefore, to obtain a deeper understanding of bone remodelling by the sympathetic nervous system, we investigated the role of α1B -adrenoceptor signalling in bone metabolism. EXPERIMENTAL APPROACH: Prazosin, a nonspecific α1 -adrenoceptor antagonist, was administered for 2 weeks in C57BL6 mice, and efficacy was evaluated by bone microarchitecture using microcomputed tomography and determination of bone formation by fluorescent labelling of bone. We also compared the bone phenotype of α1B -adrenoceptor null mice (α1B (-/-) ) with that of wild-type littermates. KEY RESULTS: We demonstrated that the systemic administration of prazosin decreased bone formation. In addition, α1B -adrenoceptor-deficient mice had a lower bone mass due to decreased bone formation but did not exhibit any changes in bone-resorbing activity. Furthermore, stimulation with phenylephrine, a non-specific α1 -adrenoceptor agonist, increased the expression of the transcriptional factor CCAAT/enhancer-binding protein δ (Cebpd) in MC3T3-E1 osteoblastic cells. The overexpression of Cebpd induced cellular proliferation in MC3T3-E1 cells, whereas the silencing of Cebpd suppressed it. CONCLUSIONS AND IMPLICATIONS: Taken together, these results suggested that α1B -adrenoceptor signalling is required for bone formation and regulated cellular proliferation through a mechanism relevant to the up-regulation of Cebpd in osteoblasts and, thus, provide new evidence for the physiological importance of α1B -adrenoceptor signalling in bone homeostasis.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。