The delivery and assessment of quality health care is complex with many interacting and interdependent components. In terms of research design and statistical analysis, this complexity and interdependency makes it difficult to assess the true impact of interventions designed to improve patient health care outcomes. Interrupted time series (ITS) is a quasi-experimental design developed for inferring the effectiveness of a health policy intervention while accounting for temporal dependence within a single system or unit. Current standardized ITS methods do not simultaneously analyze data for several units nor are there methods to test for the existence of a change point and to assess statistical power for study planning purposes in this context. To address this limitation, we propose the "Robust Multiple ITS" (R-MITS) model, appropriate for multiunit ITS data, that allows for inference regarding the estimation of a global change point across units in the presence of a potentially lagged (or anticipatory) treatment effect. Under the R-MITS model, one can formally test for the existence of a change point and estimate the time delay between the formal intervention implementation and the over-all-unit intervention effect. We conducted empirical simulation studies to assess the type one error rate of the testing procedure, power for detecting specified change-point alternatives, and accuracy of the proposed estimating methodology. R-MITS is illustrated by analyzing patient satisfaction data from a hospital that implemented and evaluated a new care delivery model in multiple units.
Assessing health care interventions via an interrupted time series model: Study power and design considerations.
阅读:2
作者:Cruz Maricela, Gillen Daniel L, Bender Miriam, Ombao Hernando
| 期刊: | Statistics in Medicine | 影响因子: | 1.800 |
| 时间: | 2019 | 起止号: | 2019 May 10; 38(10):1734-1752 |
| doi: | 10.1002/sim.8067 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
