NADPH oxidase 4 (Nox4) is a major source of reactive oxygen species (ROS) in retinal endothelial cells (ECs) and is upregulated under hyperglycemic and hypoxic conditions. However, the role of endothelial Nox4 upregulation in long-term retinal blood vessel damage in diabetic retinopathy (DR) remains undefined. Here, we attempted to address this question using humanized EC-specific Nox4 transgenic (hNox4EC-Tg) and EC-specific Nox4 knockout (Nox4EC-KO) mouse models. Our results show that hNox4EC-Tg mice at age of 10-12 months exhibited increased tortuosity of retinal blood vessels, focal vascular leakage, and acellular capillary formation. In vitro study revealed enhanced apoptosis in brain microvascular ECs derived from hNox4EC-Tg mice, concomitant with increased mitochondrial ROS, elevated lipid peroxidation, decreased mitochondrial membrane potential, and reduced mitochondrial respiratory function. In contrast, EC-specific deletion of Nox4 decreased mitochondrial ROS generation, alleviated mitochondrial damage, reduced EC apoptosis, and protected the retina from acellular capillary formation and vascular hyperpermeability in a streptozotocin-induced diabetes mouse model. These findings suggest that sustained upregulation of Nox4 in the endothelium contributes to retinal vascular pathology in diabetes, at least in part, through impairing mitochondrial function. Normalization of Nox4 expression in ECs may provide a new approach for prevention of vascular injury in DR.
Sustained Upregulation of Endothelial Nox4 Mediates Retinal Vascular Pathology in Type 1 Diabetes.
阅读:3
作者:Tang Xixiang, Wang Jinli, Abboud Hanna E, Chen Yanming, Wang Joshua J, Zhang Sarah X
| 期刊: | Diabetes | 影响因子: | 7.500 |
| 时间: | 2023 | 起止号: | 2023 Jan 1; 72(1):112-125 |
| doi: | 10.2337/db22-0194 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
