Joint modeling of associated mixed biomarkers in longitudinal studies leads to a better clinical decision by improving the efficiency of parameter estimates. In many clinical studies, the observed time for two biomarkers may not be equivalent and one of the longitudinal responses may have recorded in a longer time than the other one. In addition, the response variables may have different missing patterns. In this paper, we propose a new joint model of associated continuous and binary responses by accounting different missing patterns for two longitudinal outcomes. A conditional model for joint modeling of the two responses is used and two shared random effects models are considered for intermittent missingness of two responses. A Bayesian approach using Markov Chain Monte Carlo (MCMC) is adopted for parameter estimation and model implementation. The validation and performance of the proposed model are investigated using some simulation studies. The proposed model is also applied for analyzing a real data set of bariatric surgery.
A Bayesian shared parameter model for joint modeling of longitudinal continuous and binary outcomes.
阅读:5
作者:Baghfalaki T, Ganjali M, Kabir A, Pazouki A
| 期刊: | J Appl Stat | 影响因子: | 0.000 |
| 时间: | 2022 | 起止号: | 2020 Sep 18; 49(3):638-655 |
| doi: | 10.1080/02664763.2020.1822303 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
