Fuzi is commonly used in traditional Chinese medicine. Clinical Fuzi poisoning cases have frequently been reported. Glycyrrhizae Radix is often used to alleviate Fuzi's toxicity. However, the poisoning mechanism of Fuzi and the detoxication mechanism of Glycyrrhizae Radix are still not clear. We identified the chemical components of Fuzi at different decoction times (0.5, 1, 2, 4, and 6âh) using ultrahigh performance liquid chromatography quadrupole time-of-flight mass spectrometry. A total of 35 compounds were detected in the Fuzi decoction, including diester alkaloids, monoester alkaloids, amino acids, phenolic acids, organic acids, glycosides, and sugars among others. The content of diester alkaloids (i.e., subaconitine, neoaconitine, and aconitine) in the Fuzi decoction decreased after 2âh of decoction time, while the content of monoester alkaloids (i.e., benzoyl aconitine and benzoyl subaconitine) reached a peak at 2âh. A total of 32 rats were randomly divided into four groups, including 8 cases in the low-dosage Fuzi decoction group A, 8 cases in the high-dosage Fuzi decoction group B, 8 cases in the Fuzi and glycyrrhizae decoction group C, and 8 cases in the control group D. The decoction was administered orally for 7 days. Then, a serum was obtained. The metabolites' changes were analyzed in serum metabolomics using liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Statistical analysis and pathway analysis were used to assess the effects of glycyrrhizae on the metabolic changes induced by Fuzi. The behavioral and biochemical characteristics indicated that Fuzi exhibited toxic effects on rats and their metabolic profiles changed. However, the metabolic profiles of the glycyrrhizae group became similar to those of the control group. These profiles showed that glycyrrhizae can effectively improve Fuzi poisoning rats. Our study demonstrated that the established pseudotargeted metabolomics is a powerful approach for investigating the mechanisms of herbal toxicity.
The Pseudotargeted Metabolomics Study on the Toxicity of Fuzi Using Ultraperformance Liquid Chromatography Tandem Mass Spectrometry.
阅读:3
作者:Wu Huifei, Zhang Wenxia, Lin Hui, Ye Qiuming, Guo Jiayin, Quan Shijian
| 期刊: | Evidence-Based Complementary and Alternative Medicine | 影响因子: | 0.000 |
| 时间: | 2022 | 起止号: | 2022 Sep 13; 2022:6539675 |
| doi: | 10.1155/2022/6539675 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
