Identification of Salmonella enterica serovar Dublin-specific sequences by subtractive hybridization and analysis of their role in intestinal colonization and systemic translocation in cattle.

阅读:5
作者:Pullinger Gillian D, Dziva Francis, Charleston Bryan, Wallis Timothy S, Stevens Mark P
Salmonella enterica serovar Dublin is a host-restricted serovar associated with typhoidal disease in cattle. In contrast, the fowl-associated serovar S. enterica serovar Gallinarum is avirulent in calves, yet it invades ileal mucosa and induces enteritis at levels comparable to those induced by S. enterica serovar Dublin. Suppression subtractive hybridization was employed to identify S. enterica serovar Dublin strain SD3246 genes absent from S. enterica serovar Gallinarum strain SG9. Forty-one S. enterica serovar Dublin fragments were cloned and sequenced. Among these, 24 mobile-element-associated genes were identified, and 12 clones exhibited similarity with sequences of known or predicted function in other serovars. Three S. enterica serovar Dublin-specific regions were homologous to regions from the genome of Enterobacter sp. strain 638. Sequencing of fragments adjacent to these three sequences revealed the presence of a 21-kb genomic island, designated S. enterica serovar Dublin island 1 (SDI-1). PCR analysis and Southern blotting showed that SDI-1 is highly conserved within S. enterica serovar Dublin isolates but rarely found in other serovars. To probe the role of genes identified by subtractive hybridization in vivo, 24 signature-tagged S. enterica serovar Dublin SD3246 mutants lacking loci not present in Salmonella serovar Gallinarum SG9 were created and screened by oral challenge of cattle. Though attenuation of tagged SG9 and SD3246 Salmonella pathogenicity island-1 (SPI-1) and SPI-2 mutant strains was detected, no obvious defects of these 24 mutants were detected. Subsequently, a DeltaSDI-1 mutant was found to exhibit weak but significant attenuation compared with the parent strain in coinfection of calves. SDI-1 mutation did not impair invasion, intramacrophage survival, or virulence in mice, implying that SDI-1 does not influence fitness per se and may act in a host-specific manner.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。