Interval-Valued Random Matrices.

阅读:5
作者:Sadeghkhani Abdolnasser, Sadeghkhani Ali
This paper introduces a novel approach that combines symbolic data analysis with matrix theory through the concept of interval-valued random matrices. This framework is designed to address the complexities of real-world data, offering enhanced statistical modeling techniques particularly suited for large and complex datasets where traditional methods may be inadequate. We develop both frequentist and Bayesian methods for the statistical inference of interval-valued random matrices, providing a comprehensive analytical framework. We conduct extensive simulations to compare the performance of these methods, demonstrating that Bayesian estimators outperform maximum likelihood estimators under the Frobenius norm loss function. The practical utility of our approach is further illustrated through an application to climatology and temperature data, highlighting the advantages of interval-valued random matrices in real-world scenarios.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。