Beluga whale optimization (BWO) is a swarm-based metaheuristic algorithm inspired by the group behavior of beluga whales. BWO suffers from drawbacks such as an insufficient exploration capability and the tendency to fall into local optima. To address these shortcomings, this paper proposes augmented multi-strategy beluga optimization (AMBWO). The adaptive population learning strategy is proposed to improve the global exploration capability of BWO. The introduction of the roulette equilibrium selection strategy allows BWO to have more reference points to choose among during the exploitation phase, which enhances the flexibility of the algorithm. In addition, the adaptive avoidance strategy improves the algorithm's ability to escape from local optima and enriches the population quality. In order to validate the performance of the proposed AMBWO, extensive evaluation comparisons with other state-of-the-art improved algorithms were conducted on the CEC2017 and CEC2022 test sets. Statistical tests, convergence analysis, and stability analysis show that the AMBWO exhibits a superior overall performance. Finally, the applicability and superiority of the AMBWO was further verified by several engineering optimization problems.
AMBWO: An Augmented Multi-Strategy Beluga Whale Optimization for Numerical Optimization Problems.
阅读:5
作者:You Guoping, Lu Zengtong, Qiu Zhipeng, Cheng Hao
| 期刊: | Biomimetics | 影响因子: | 3.900 |
| 时间: | 2024 | 起止号: | 2024 Nov 28; 9(12):727 |
| doi: | 10.3390/biomimetics9120727 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
