Natural product chemical diversity is fuelled by the emergence and ongoing evolution of biosynthetic pathways in secondary metabolism. However, co-evolution of enzymes for metabolic diversification is not well understood, especially at the biochemical level. Here, two parallel assemblies with an extraordinarily high sequence identity from Lyngbya majuscula form a beta-branched cyclopropane in the curacin A pathway (Cur), and a vinyl chloride group in the jamaicamide pathway (Jam). The components include a halogenase, a 3-hydroxy-3-methylglutaryl enzyme cassette for polyketide beta-branching, and an enoyl reductase domain. The halogenase from CurA, and the dehydratases (ECH(1)s), decarboxylases (ECH(2)s) and enoyl reductase domains from both Cur and Jam, were assessed biochemically to determine the mechanisms of cyclopropane and vinyl chloride formation. Unexpectedly, the polyketide beta-branching pathway was modified by introduction of a gamma-chlorination step on (S)-3-hydroxy-3-methylglutaryl mediated by Cur halogenase, a non-haem Fe(ii), alpha-ketoglutarate-dependent enzyme. In a divergent scheme, Cur ECH(2) was found to catalyse formation of the alpha,beta enoyl thioester, whereas Jam ECH(2) formed a vinyl chloride moiety by selectively generating the corresponding beta,gamma enoyl thioester of the 3-methyl-4-chloroglutaconyl decarboxylation product. Finally, the enoyl reductase domain of CurF specifically catalysed an unprecedented cyclopropanation on the chlorinated product of Cur ECH(2) instead of the canonical alpha,beta C = C saturation reaction. Thus, the combination of chlorination and polyketide beta-branching, coupled with mechanistic diversification of ECH(2) and enoyl reductase, leads to the formation of cyclopropane and vinyl chloride moieties. These results reveal a parallel interplay of evolutionary events in multienzyme systems leading to functional group diversity in secondary metabolites.
Metamorphic enzyme assembly in polyketide diversification.
阅读:3
作者:Gu Liangcai, Wang Bo, Kulkarni Amol, Geders Todd W, Grindberg Rashel V, Gerwick Lena, HÃ¥kansson Kristina, Wipf Peter, Smith Janet L, Gerwick William H, Sherman David H
| 期刊: | Nature | 影响因子: | 48.500 |
| 时间: | 2009 | 起止号: | 2009 Jun 4; 459(7247):731-5 |
| doi: | 10.1038/nature07870 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
