Characterization and structural basis for the brightness of mCLIFY: A novel monomeric and circularly permuted bright yellow fluorescent protein.

阅读:3
作者:Shweta Him, Gupta Kushol, Zhou Yufeng, Cui Xiaonan, Li Selene, Lu Zhe, Goldman Yale E, Dantzig Jody A
Ongoing improvements of genetically encoded fluorescent proteins have enhanced cellular localization studies and performance of biosensors, such as environmentally or mechanically sensitive fluorescence resonance energy transfer pairs, in cell biological and biophysical research. The brightest yellow fluorescent protein, widely used in these studies is YPet, derived from the jellyfish Aequorea victoria via the GFP derivative Venus. YPet dimerizes at concentrations used in cellular studies (K(D)(1-2) = 3.4 μM) which impacts quantitative interpretation of emission intensity, rotational freedom, energy transfer, and lifetime. Although YPet is nearly 30% brighter than Venus, no atomic structures of YPet have been reported to ascertain the structural differences leading to the higher brightness, possibly due to the tendency to dimerize or oligomerize. Here, we report properties of a new YPet derivative, mCLIFY, a monomeric, bright, yellow, and long-lived fluorescent protein created by circular permutation of YPet and substitution of the amino acid residues thought to mediate dimerization. mCLIFY retains the advantageous photophysical properties of YPet but does not dimerize at least up to 40 μM concentration. We determined the atomic structure of mCLIFY at 1.57-à resolution. Extensive characterization of the photophysical and structural properties of YPet and mCLIFY allowed us to elucidate the bases of their long lifetimes, enhanced brightness, and the difference in propensity to dimerize.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。