Using the Intrinsic Geometry of Binodal Curves to Simplify the Computation of Ternary Liquid-Liquid Phase Diagrams.

阅读:5
作者:Shcherbakova Nataliya, Gerbaud Vincent, Roger Kevin
Phase diagrams are powerful tools to understand the multi-scale behaviour of complex systems. Yet, their determination requires in practice both experiments and computations, which quickly becomes a daunting task. Here, we propose a geometrical approach to simplify the numerical computation of liquid-liquid ternary phase diagrams. We show that using the intrinsic geometry of the binodal curve, it is possible to formulate the problem as a simple set of ordinary differential equations in an extended 4D space. Consequently, if the thermodynamic potential, such as Gibbs free energy, is known from an experimental data set, the whole phase diagram, including the spinodal curve, can be easily computed. We showcase this approach on four ternary liquid-liquid diagrams, with different topological properties, using a modified Flory-Huggins model. We demonstrate that our method leads to similar or better results comparing those obtained with other methods, but with a much simpler procedure. Acknowledging and using the intrinsic geometry of phase diagrams thus appears as a promising way to further develop the computation of multiphase diagrams.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。