Unveiling the role of microRNA-7 in linking TGF-β-Smad-mediated epithelial-mesenchymal transition with negative regulation of trophoblast invasion

揭示 microRNA-7 在 TGF-β-Smad 介导的上皮-间质转化与滋养细胞侵袭负向调节中的作用

阅读:8
作者:Jin-Chung Shih, Hua-Heng Lin, An-Che Hsiao, Yi-Ting Su, Shawn Tsai, Chung-Liang Chien, Hsiu-Ni Kung

Abstract

Several pregnancy complications result from abnormal trophoblast invasion. The dichotomous effect of TGF-β on epithelial-mesenchymal transition (EMT) between trophoblast invasion and cancer progression remains unknown and a critical concern. We attenuated the expression of TGF-β type 1 receptor (coding by TGFBR1) with RNA interference in trophoblastic cells and significantly enhanced the trophoblastic invasion. Analysis of microRNA profiles in trophoblasts indicated microRNA-7 as a key molecule linking TGF-β with the negative regulation of trophoblast invasion. We then attenuated TGFBR1 and miR-7 transcription by transducing either short hairpin RNA targeting TGFBR1 or anti-miR-7-locked nucleonic acid, and we observed an up-regulation of EMT-related transcription factors (TFs) and their downstream effectors, causing a mesenchymal transition of trophoblasts. Conversely, overexpression of TGFBR1 or miR-7 led to the epithelial transition of trophoblasts. Our results showed that TGF-β-induced miR-7 expression negatively modulated the TGF-β-SMAD family member 2-mediated EMT pathway via targeting EMT-related TFs and down-regulating their mesenchymal markers. These findings possibly explain, at least in part, why TGF-β exerts an opposite effect on EMT during trophoblast invasion and cancer progression.-Shih, J.-C., Lin, H.-H., Hsiao, A.-C., Su, Y.-T., Tsai, S., Chien, C.-L., Kung, H.-N. Unveiling the role of microRNA-7 in linking TGF-β-Smad-mediated epithelial-mesenchymal transition with negative regulation of trophoblast invasion.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。