TCF7L2 regulates postmitotic differentiation programmes and excitability patterns in the thalamus

TCF7L2调控丘脑的细胞分裂后分化程序和兴奋模式

阅读:2
作者:Marcin Andrzej Lipiec ,Joanna Bem ,Kamil Koziński ,Chaitali Chakraborty ,Joanna Urban-Ciećko ,Tomasz Zajkowski ,Michał Dąbrowski ,Łukasz Mateusz Szewczyk ,Angel Toval ,José Luis Ferran ,Andrzej Nagalski ,Marta Barbara Wiśniewska

Abstract

Neuronal phenotypes are controlled by terminal selector transcription factors in invertebrates, but only a few examples of such regulators have been provided in vertebrates. We hypothesised that TCF7L2 regulates different stages of postmitotic differentiation in the thalamus, and functions as a thalamic terminal selector. To investigate this hypothesis, we used complete and conditional knockouts of Tcf7l2 in mice. The connectivity and clustering of neurons were disrupted in the thalamo-habenular region in Tcf7l2-/- embryos. The expression of subregional thalamic and habenular transcription factors was lost and region-specific cell migration and axon guidance genes were downregulated. In mice with a postnatal Tcf7l2 knockout, the induction of genes that confer thalamic terminal electrophysiological features was impaired. Many of these genes proved to be direct targets of TCF7L2. The role of TCF7L2 in terminal selection was functionally confirmed by impaired firing modes in thalamic neurons in the mutant mice. These data corroborate the existence of master regulators in the vertebrate brain that control stage-specific genetic programmes and regional subroutines, maintain regional transcriptional network during embryonic development, and induce terminal selection postnatally. Keywords: Brain development; Neuronal identity; TCF7L2; Terminal selector; Thalamus; Transcription factor.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。