Affinities between the binding partners of the HIV-1 integrase dimer-lens epithelium-derived growth factor (IN dimer-LEDGF) complex

HIV-1 整合酶二聚体-晶状体上皮衍生生长因子 (IN 二聚体-LEDGF) 复合物结合伙伴之间的亲和力

阅读:9
作者:Manuel Tsiang, Gregg S Jones, Magdeleine Hung, Susmith Mukund, Bin Han, Xiaohong Liu, Kerim Babaoglu, Eric Lansdon, Xiaowu Chen, Jacob Todd, Terrence Cai, Nikos Pagratis, Roman Sakowicz, Romas Geleziunas

Abstract

The interaction between lens epithelium-derived growth factor/transcriptional co-activator p75 (LEDGF) and human immunodeficiency virus type 1 (HIV-1) integrase (IN) is essential for HIV-1 replication. Homogeneous time-resolved fluorescence resonance energy transfer assays were developed to characterize HIV-1 integrase dimerization and the interaction between LEDGF and IN dimers. Using these assays in an equilibrium end point dose-response format with mathematical modeling, we determined the dissociation constants of IN dimers (K(dimer) = 67.8 pm) and of LEDGF from IN dimers (K(d) = 10.9 nm). When used in a kinetic format, the assays allowed the determination of the on- and off-rate constants for these same interactions. Integrase dimerization had a k(on) of 0.1247 nm(-1) x min(-1) and a k(off) of 0.0080 min(-1) resulting in a K(dimer) of 64.5 pm. LEDGF binding to IN dimers had a k(on) of 0.0285 nm(-1).min(-1) and a k(off) of 0.2340 min(-1) resulting in a K(d) of 8.2 nm. These binding assays can also be used in an equilibrium end point competition format. In this format, the IN catalytic core domain produced a K(i) of 15.2 nm while competing for integrase dimerization, confirming the very tight interaction of IN with itself. In the same format, LEDGF produced a K(i) value of 35 nm when competing for LEDGF binding to IN dimers. In summary, this study describes a methodology combining homogeneous time-resolved fluorescence resonance energy transfer and mathematical modeling to derive the affinities between IN monomers and between LEDGF and IN dimers. This study revealed the significantly tighter nature of the IN-IN dimer compared with the IN-LEDGF interaction.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。