Chromosome-level genome of the venomous snail Kalloconus canariensis: a valuable model for venomics and comparative genomics

毒蜗牛 Kalloconus canariensis 的染色体水平基因组:毒理学和比较基因组学的宝贵模型

阅读:7
作者:Ana Herráez-Pérez, José Ramón Pardos-Blas, Carlos M L Afonso, Manuel J Tenorio, Rafael Zardoya

Background

Genomes are powerful resources to understand the evolutionary mechanisms underpinning the origin and diversification of the venoms of cone snails (Conidae: Caenogastropoda) and could aid in the development of novel drugs. Findings: Here, we used PacBio continuous long reads and Omni-C data to assemble the chromosome-level genome of Kalloconus canariensis, a vermivorous cone endemic to the Canary Islands. The final genome size was 2.87 Gb, with a N50 of 79.75 Mb and 91% of the reads located into the 35 largest scaffolds. Up to 55.80% of the genome was annotated as repetitive regions, being class I of transposable elements (16.65%) predominant. The annotation estimated 34,287 gene models. Comparative analysis of this genome with the 2 cone snail genomes released to date (Dendroconus betulinus and Lautoconus ventricosus) revealed similar genome sizes and organization, although chromosome sizes tended to be shorter in K. canariensis. Phylogenetic relationships within subclass Caenogastropoda were recovered with strong statistical support. The family Conidae was recovered as a clade, with K. canariensis plus L. ventricosus sister to D. betulinus. Conclusions: Despite the great diversity of cone snails (>900 species) and their venoms (hundreds of peptides per species), only 2 recently reported genomes are available for the group. The high-quality chromosome-level assembly of K. canariensis will be a valuable reference for studying the origin and evolution of conotoxin genes as well as whole-genome duplication events during gastropod evolution.

Conclusions

Despite the great diversity of cone snails (>900 species) and their venoms (hundreds of peptides per species), only 2 recently reported genomes are available for the group. The high-quality chromosome-level assembly of K. canariensis will be a valuable reference for studying the origin and evolution of conotoxin genes as well as whole-genome duplication events during gastropod evolution.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。