Characterizing upper extremity fine motor function in the presence of white matter hyperintensities: A 7 T MRI cross-sectional study in older adults.

阅读:12
作者:Iandolo Riccardo, Avci Esin, Bommarito Giulia, Sandvig Ioanna, Rohweder Gitta, Sandvig Axel
BACKGROUND: White matter hyperintensities (WMH) are a prevalent radiographic finding in the aging brain studies. Research on WMH association with motor impairment is mostly focused on the lower-extremity function and further investigation on the upper-extremity is needed. How different degrees of WMH burden impact the network of activation recruited during upper limb motor performance could provide further insight on the complex mechanisms of WMH pathophysiology and its interaction with aging and neurological disease processes. METHODS: 40 healthy elderly subjects without a neurological/psychiatric diagnosis were included in the study (16F, mean age 69.3 years). All subjects underwent ultra-high field 7 T MRI including structural and finger tapping task-fMRI. First, we quantified the WMH lesion load and its spatial distribution. Secondly, we performed a data-driven stratification of the subjects according to their periventricular and deep WMH burdens. Thirdly, we investigated the distribution of neural recruitment and the corresponding activity assessed through BOLD signal changes among different brain regions for groups of subjects. We clustered the degree of WMH based on location, numbers, and volume into three categories; ranging from mild, moderate, and severe. Finally, we explored how the spatial distribution of WMH, and activity elicited during task-fMRI relate to motor function, measured with the 9-Hole Peg Test. RESULTS: Within our population, we found three subgroups of subjects, partitioned according to their periventricular and deep WMH lesion load. We found decreased activity in several frontal and cingulate cortex areas in subjects with a severe WMH burden. No statistically significant associations were found when performing the brain-behavior statistical analysis for structural or functional data. CONCLUSION: WMH burden has an effect on brain activity during fine motor control and the activity changes are associated with varying degrees of the total burden and distributions of WMH lesions. Collectively, our results shed new light on the potential impact of WMH on motor function in the context of aging and neurodegeneration.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。