Reduction of sulfur in fuel oil using Fe(2)O(3) hybrid nanoadsorbent by solvent deasphalting and optimization of operational parameters with CCD.

阅读:5
作者:Malek Mohammadreza, Samipourgiri Mohammad, Rashidi Alimorad, Majidian Nasrolah
The present study investigated and tested the effect of adding three types of nanoadsorbents (multi-walled carbon nanotubes (MWCNT)) in pure form, multi-walled carbon nanotubes with Fe(2)O(3) particles (MWCNT-Fe(2)O(3)) hybrid, and Silanated-Fe(2)O(3) hybrid to heavy fuel oil to reduce sulfur using a deasphalting process with solvent. First, all three types of nanoadsorbents were synthesized. Then, the Central Composite Design (CCD) method was used to identify the parameters effective in deasphalting, such as the type of nanoadsorbent, the weight percentage of nanoadsorbent, and the solvent-to-fuel ratio, and to obtain their optimal values. Based on the optimization result, under laboratory temperature and pressure conditions, the highest percentage of sulfur reduction in deasphalted fuel (DAO) was obtained by adding 2.5% by weight of silanated-Fe(2)O(3) nano-adsorbent and with a solvent-to-fuel ratio of 7.7 (The weight percentage of sulfur in DAO decreased from 3.5% by weight to 2.46%, indicating a decrease of 30%). Additionally, by increasing the temperature to 70 °C, in optimal conditions, the results revealed that the remaining sulfur percentage in DAO decreased to 2.13% by weight, indicating a decrease of 40%. Synthesized nanoadsorbents and asphaltene particles adsorbed on the surfaces of nanoadsorbents were evaluated by XRD, FTIR, FESEM, and TEM techniques.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。