Having a structural network representation of connectivity in the brain is instrumental in analyzing communication dynamics and neural information processing. In this work, we make steps towards understanding multisensory information flow and integration using a network diffusion approach. In particular, we model the flow of evoked activity, initiated by stimuli at primary sensory regions, using the asynchronous linear threshold (ALT) diffusion model. The ALT model captures how evoked activity that originates at a given region of the cortex "ripples through" other brain regions (referred to as an activation cascade). We find that a small number of brain regions-the claustrum and the parietal temporal cortex being at the top of the list-are involved in almost all cortical sensory streams. This suggests that the cortex relies on an hourglass architecture to first integrate and compress multisensory information from multiple sensory regions, before utilizing that lower dimensionality representation in higher level association regions and more complex cognitive tasks.
Multisensory integration in the mouse cortical connectome using a network diffusion model.
阅读:4
作者:Shadi Kamal, Dyer Eva, Dovrolis Constantine
| 期刊: | Network Neuroscience | 影响因子: | 3.100 |
| 时间: | 2020 | 起止号: | 2020 Nov 1; 4(4):1030-1054 |
| doi: | 10.1162/netn_a_00164 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
