In this study, we sought to investigate the mechanism by which heterogeneous nuclear ribonucleoprotein (hnRNP) H and F regulate proteolipid protein (PLP)/DM20 alternative splicing. G-rich sequences in exon 3B, G1 and M2, are required for hnRNPH- and F-mediated regulation of the PLP/DM20 ratio and, when placed between competing 5' splice sites in an alpha-globin minigene, direct hnRNPH/F-regulated alternative splicing. In contrast, the activity of the intronic splicing enhancer, which is necessary for PLP splicing, is only modestly reduced by removal of hnRNPH/F both in PLP and alpha-globin gene context. In vivo, hnRNPH reversed reduction of DM20 splicing induced by hnRNPH/F removal, whereas hnRNPF had little effect. Tethering of the MS2-hnRNPH fusion protein downstream of the DM20 5' splice site increased DM20 splicing, whereas MS2-hnRNPF did not. Binding of U1 small nuclear ribonucleoprotein (U1snRNP) to DM20 is greatly impaired by mutation of G1 and M2 and depletion of hnRNPH and F. Reconstitution of hnRNPH/F-depleted extracts with either hnRNPH or F restored U1snRNP binding. We conclude that hnRNPH and F regulate DM20 splicing by recruiting U1snRNP and that hnRNPH plays a primary role in DM20 splice site selection in vivo. Decreased expression of hnRNPH/F in differentiated oligodendrocytes may regulate the PLP/DM20 ratio by reducing DM20 5' splice site recognition by U1snRNP.
Heterogeneous nuclear ribonucleoproteins H and F regulate the proteolipid protein/DM20 ratio by recruiting U1 small nuclear ribonucleoprotein through a complex array of G runs.
阅读:3
作者:Wang Erming, Cambi Franca
| 期刊: | Journal of Biological Chemistry | 影响因子: | 3.900 |
| 时间: | 2009 | 起止号: | 2009 Apr 24; 284(17):11194-204 |
| doi: | 10.1074/jbc.M809373200 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
