Co-initiating-system dual-mechanism drives the design of printable entangled polymer multinetworks.

阅读:4
作者:Wei An, Wang Qian, Liu Jupen, Huang Yuchan, Li Haoxiang, Zhu Zhenhao, Wang Tao, Yu You
Entanglement significantly enhances the mechanical performance and functionality of both natural and synthetic materials. However, developing straightforward, versatile strategies for creating high-performance entangled polymer materials remains a challenge. Here, a co-initiating-system dual-mechanism strategy is designed for fabricating printable entangled polymer multinetworks. This thermal-light dual-initiation process benefits the synthesis of high-molecular-weight polymers and promotes the rapid formation of multinetworks within hydrogels. The resulting long polymer chains enable hydrogels with higher mechanical performance, lower stress relaxation, and activation energy compared to short polymer chain-contained samples. Such a method proves more effective than traditional self-thickening and strengthening techniques for enhancing hydrogel entanglements and is also compatible with additive manufacturing, enabling the design of complex 2D webs with adaptive mechanical performance and capable of detecting and sensing applications. This work provides an effective strategy for designing high-performance entangled polymer materials, which are set to impact numerous fields, from advanced sensing to material science and beyond.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。