DSGE Estimation Using Generalized Empirical Likelihood and Generalized Minimum Contrast.

阅读:7
作者:Boaretto Gilberto, Laurini Márcio Poletti
We investigate the performance of estimators of the generalized empirical likelihood and minimum contrast families in the estimation of dynamic stochastic general equilibrium models, with particular attention to the robustness properties under misspecification. From a Monte Carlo experiment, we found that (i) the empirical likelihood estimator-as well as its version with smoothed moment conditions-and Bayesian inference obtained, in that order, the best performances, including misspecification cases; (ii) continuous updating empirical likelihood, minimum Hellinger distance, exponential tilting estimators, and their smoothed versions exhibit intermediate comparative performance; (iii) the performance of exponentially tilted empirical likelihood, exponential tilting Hellinger distance, and their smoothed versions was seriously compromised by atypical estimates; (iv) smoothed and non-smoothed estimators exhibit very similar performances; and (v) the generalized method of moments, especially in the over-identified case, and maximum likelihood estimators performed worse than their competitors.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。