The sequence kernel association test (SKAT) is probably the most popular statistical test used in rare-variant association studies. Its null distribution involves unknown parameters that need to be estimated. The current estimation method has a valid type I error rate, but the power is compromised given that all subjects are used for estimation. I have developed an estimation method that uses only control subjects. Named SKAT+, this method uses the same test statistic as SKAT but differs in the way the null distribution is estimated. Extensive simulation studies and applications to data from the Genetic Analysis Workshop 17 and the Ocular Hypertension Treatment Study demonstrated that SKAT+ has superior power over SKAT while maintaining control over the type I error rate. This method is applicable to extensions of SKAT in the literature.
Boosting the Power of the Sequence Kernel Association Test by Properly Estimating Its Null Distribution.
阅读:9
作者:Wang, Kai
| 期刊: | American Journal of Human Genetics | 影响因子: | 8.100 |
| 时间: | 2016 | 起止号: | 2016 Jul 7; 99(1):104-14 |
| doi: | 10.1016/j.ajhg.2016.05.011 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
