Enhancer of zeste homolog 2 (EZH2) regulates stem cells renewal, maintenance, and differentiation into different cell lineages including neuron. Changes in intracellular Ca(2+) concentration play a critical role in the differentiation of neurons. However, whether EZH2 modulates intracellular Ca(2+) signaling in regulating neuronal differentiation from human mesenchymal stem cells (hMSCs) still remains unclear. When hMSCs were treated with a Ca(2+) chelator or a PLC inhibitor to block IP(3)-mediated Ca(2+) signaling, neuronal differentiation was disrupted. EZH2 bound to the promoter region of PIP5K1C to suppress its transcription in proliferating hMSCs. Interestingly, knockdown of EZH2 enhanced the expression of PIP5K1C, which in turn increased the amount of PI(4,5)P(2), a precursor of IP(3), and resulted in increasing the intracellular Ca(2+) level, suggesting that EZH2 negatively regulates intracellular Ca(2+) through suppression of PIP5K1C. Knockdown of EZH2 also enhanced hMSCs differentiation into functional neuron both in vitro and in vivo. In contrast, knockdown of PIP5K1C significantly reduced PI(4,5)P(2) contents and intracellular Ca(2+) release in EZH2-silenced cells and resulted in the disruption of neuronal differentiation from hMSCs. Here, we provide the first evidence to demonstrate that after induction to neuronal differentiation, decreased EZH2 activates the expression of PIP5K1C to evoke intracellular Ca(2+) signaling, which leads hMSCs to differentiate into functional neuron lineage. Activation of intracellular Ca(2+) signaling by repressing or knocking down EZH2 might be a potential strategy to promote neuronal differentiation from hMSCs for application to neurological dysfunction diseases.
EZH2 regulates neuronal differentiation of mesenchymal stem cells through PIP5K1C-dependent calcium signaling.
阅读:7
作者:Yu Yung-Luen, Chou Ruey-Hwang, Chen Ling-Tzu, Shyu Woei-Cherng, Hsieh Su-Ching, Wu Chen-Shiou, Zeng Hong-Jie, Yeh Su-Peng, Yang De-Ming, Hung Shih-Chieh, Hung Mien-Chie
| 期刊: | Journal of Biological Chemistry | 影响因子: | 3.900 |
| 时间: | 2011 | 起止号: | 2011 Mar 18; 286(11):9657-67 |
| doi: | 10.1074/jbc.M110.185124 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
