The 70âkDa heat shock protein (Hsp70) family of molecular chaperones ensures protein biogenesis and homeostasis, driven by ATP hydrolysis. Here, we introduce in-cyclo NMR, an experimental setup that combines high-resolution NMR spectroscopy with an ATP recovery and a phosphate removal system. In-cyclo NMR simultaneously resolves kinetic rates and structural information along functional cycles of ATP-driven molecular machines. We benchmark the method on the nucleotide binding domain (NBD) of the human Hsp70 chaperone BiP. The protein cycles through ATP binding, hydrolysis, and two parallel pathways of product release. We determine the kinetic rates of all eleven underlying elementary reactions and show these to match independent measurements. The two product release pathways regulate the cycle duration dependent on the products concentration. Under physiological conditions, they are both used. The in-cyclo NMR method will serve as a platform for studies of ATP-driven functional cycles at a remarkable level of detail.
Mechanism of ATP hydrolysis in the Hsp70 BiP nucleotide-binding domain.
阅读:9
作者:Mas Guillaume, Hiller Sebastian
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 Jun 1; 16(1):5086 |
| doi: | 10.1038/s41467-025-60343-x | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
