Spatiotemporal analysis of F-actin polymerization with micropillar arrays reveals synchronization between adhesion sites.

阅读:4
作者:Hollander Sarit, Guo Yuanning, Wolfenson Haguy, Zaritsky Assaf
We repurposed micropillar arrays to quantify spatiotemporal inter-adhesion communication. Following the observation that integrin adhesions formed around pillar tops we relied on the precise repetitive spatial control of the pillars to reliably monitor F-actin dynamics in mouse embryonic fibroblasts as a model for spatiotemporal adhesion-related intracellular signaling. Using correlation-based analyses, we revealed localized information flows propagating between adjacent pillars that were integrated over space and time to synchronize the adhesion dynamics within the entire cell. Probing the mechanical regulation, we discovered that stiffer pillars or partial actomyosin contractility inhibition enhances inter-adhesion F-actin synchronization, and that inhibition of Arp2/3, but not formin, reduces synchronization. Our results suggest that adhesions can communicate and highlight the potential of using micropillar arrays as a tool to measure spatiotemporal intracellular signaling.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。