We aim to see if the difference between equilibrium and disequilibrium chemistry is observable in the atmospheres of transiting planets by the James Webb Space Telescope (JWST). We perform a case study comparing the dayside emission spectra of three planets like HD 189733b, WASP-80b, and GJ436b, in and out of chemical equilibrium at two metallicities each. These three planets were chosen because they span a large range of planetary masses and equilibrium temperatures, from hot and Jupiter-sized to warm and Neptune-sized. We link the one-dimensional disequilibrium chemistry model from Venot et al. (2012) in which thermochemical kinetics, vertical transport, and photochemistry are taken into account, to the one-dimensional, pseudo line-by-line radiative transfer model, Pyrat Bay, developed especially for hot Jupiters, and then simulate JWST spectra using PandExo for comparing the effects of temperature, metallicity, and radius. We find the most significant differences from 4 to 5 μm due to disequilibrium from CO and CO(2) abundances, and also H(2)O for select cases. Our case study shows a certain "sweet spot" of planetary mass, temperature, and metallicity where the difference between equilibrium and disequilibrium is observable. For a planet similar to WASP-80b, JWST's NIRSpec G395M can detect differences due to disequilibrium chemistry with one eclipse event. For a planet similar to GJ 436b, the observability of differences due to disequilibrium chemistry is possible at low metallicity given five eclipse events, but not possible at the higher metallicity.
A COMPARISON OF SIMULATED JWST OBSERVATIONS DERIVED FROM EQUILIBRIUM AND NON-EQUILIBRIUM CHEMISTRY MODELS OF GIANT EXOPLANETS.
阅读:4
作者:Blumenthal Sarah D, Mandell Avi M, Hébrard Eric, Batalha Natasha E, Cubillos Patricio E, Rugheimer Sarah, Wakeford Hannah R
| 期刊: | Astrophys J | 影响因子: | 0.000 |
| 时间: | 2018 | 起止号: | 2018 Feb |
| doi: | 10.3847/1538-4357/aa9e51 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
