Congenital Titinopathies Linked to Mutations in TTN Metatranscript-Only Exons.

阅读:8
作者:Perrin Aurélien, Garcia-Uzquiano Rocio, Stojkovic Tanya, Tard Céline, Metay Corinne, Bergougnoux Anne, Van Goethem Charles, Thèze Corinne, Larrieux Marion, Faure-Gautron Héloise, Laporte Jocelyn, Lefebvre Guillaume, Krahn Martin, Juntas-Morales Raul, Titin's Network Collaborators, Koenig Michel, Quijano-Roy Susana, Carlier Robert-Yves, Cossée Mireille
Congenital titinopathies reported to date show autosomal recessive inheritance and are caused by a variety of genomic variants, most of them located in metatranscript (MTT)-only exons. The aim of this study was to describe additional patients and establish robust genotype-phenotype associations in titinopathies. This study involved analyzing molecular, clinical, pathological, and muscle imaging features in 20 patients who had at least one pathogenic or likely pathogenic TTN variant in MTT-only exons, with onset occurring antenatally or in the early postnatal stages. The 20 patients with recessive inheritance exhibited a heterogeneous range of phenotypes. These included fetal lethality, progressive weakness, cardiac or respiratory complications, hyper-CKemia, or dystrophic muscle biopsies. MRI revealed variable abnormalities in different muscles. All patients presented severe congenital myopathy at birth, characterized by arthrogryposis (either multiplex or axial-distal) or neonatal hypotonia in most cases. This study provides detailed genotype-phenotype correlations in congenital titinopathies caused by mutations in MTT-only exons. The findings highlight the variability in clinical presentation and the severity of phenotypes associated with these specific genetic alterations. RNA-seq analyses provided valuable insights into the molecular consequences of TTN variants, particularly in relation to splicing defects and nonsense-mediated RNA decay. In conclusion, this study reinforces the genotype-phenotype correlations between congenital myopathies and variants in TTN MTT-only exons, improves their molecular diagnosis, and provides a better understanding of their pathophysiology.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。