We present a Monte Carlo sidechain sampling procedure and apply it to assessing the flexibility of protein binding pockets. We implemented a multiple "time step" Monte Carlo algorithm to optimize sidechain sampling with a surface generalized Born implicit solvent model. In this approach, certain forces (those due to long-range electrostatics and the implicit solvent model) are updated infrequently, in "outer steps", while short-range forces (covalent, local nonbonded interactions) are updated at every "inner step". Two multistep protocols were studied. The first protocol rigorously obeys detailed balance, and the second protocol introduces an approximation to the solvation term that increases the acceptance ratio. The first protocol gives a 10-fold improvement over a protocol that does not use multiple time steps, while the second protocol generates comparable ensembles and gives a 15-fold improvement. A range of 50-200 inner steps per outer step was found to give optimal performance for both protocols. The resultant method is a practical means to assess sidechain flexibility in ligand binding pockets, as we illustrate with proof-of-principle calculations on six proteins: DB3 antibody, thermolysin, estrogen receptor, PPAR-γ, PI3 kinase, and CDK2. The resulting sidechain ensembles of the apo binding sites correlate well with known induced fit conformational changes and provide insights into binding pocket flexibility.
Multiscale Monte Carlo Sampling of Protein Sidechains: Application to Binding Pocket Flexibility.
阅读:6
作者:Nilmeier Jerome, Jacobson Matt
| 期刊: | Journal of Chemical Theory and Computation | 影响因子: | 5.500 |
| 时间: | 2008 | 起止号: | 2008 May;4(5):835-846 |
| doi: | 10.1021/ct700334a | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
