Senolytic Agent Navitoclax Inhibits Angiotensin II-Induced Heart Failure in Mice

抗衰老药物 Navitoclax 可抑制血管紧张素 II 诱发的小鼠心力衰竭

阅读:6
作者:Kangni Jia, Yang Dai, Ao Liu, Xiang Li, Liqun Wu, Lin Lu, Yangyang Bao, Qi Jin

Abstract

Navitoclax, which is a type of senolytic drug, selectively eliminates senescent cells. This study aimed to evaluate the therapeutic potential of navitoclax in treatment of angiotensin II (Ang II)-induced heart failure in mice. Navitoclax or vehicle was administrated in mice with Ang II-induced heart failure. Cardiac function and electrophysiology were assessed before and after administration of navitoclax. Cardiac remodeling, including morphological changes, fibrosis, and inflammatory responses, was analyzed in myocardial tissue. Cellular effects of navitoclax were validated in isolated primary cardiomyocytes and cardiac fibroblasts in vitro. Echocardiography of mice showed that navitoclax improved cardiac dysfunction by improving the left ventricular ejection fraction (vehicle: 45.88 ± 2.19%; navitoclax: 54.70 ± 1.65%, P < 0.01). In cardiac electrophysiological testing, navitoclax increased conduction velocity (vehicle: 1.37 ± 0.05 mm/ms; navitoclax: 1.69 ± 0.08 mm/ms, P < 0.05) and decreased susceptibility to ventricular tachyarrhythmia induced by programmed electrical stimulation. Histopathological staining, immunofluorescence, and western blotting examinations showed that navitoclax ameliorated Ang II-induced cardiac fibrosis, hypertrophy, and the inflammatory response. Moreover, navitoclax eliminated senescent cells by inducing apoptosis. Therefore, navitoclax improved cardiac function and electrophysiological characteristics through decreasing cardiac fibrosis, hypertrophy, and inflammation in mice with heart failure. Pharmacological clearance of senescent cells may be a potential therapeutic approach in heart failure with reduced ejection fraction.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。