Graphene aerogels with high surface areas, ultra-low densities, and thermal conductivities have been attracted a lot of attention in recent years. However, considerable difference in their deformation behavior and mechanical properties lead to their poor performance. The problem can be solved by preparing graphene aerogel of given morphology and by control the properties through the special structure of graphene cells. In the present work, molecular dynamics simulation is used to overview the mechanical properties of four different morphologies of graphene aerogel: honeycomb, cellular, lamellar and randomly distributed graphene flakes. All the structures are considered under uniaxial compression and tension with the detailed analysis of the deformation behavior. It is found that cellular structures have much better compressibility and elasticity. During both compression and tension, cellular structures can be transformed from one to another by controlling the compression/tensile direction. The highest strength and fracture strain are found for the lamellar GA under tension along the direction perpendicular to the alignment of the graphene walls. This reveals that the mechanical properties of graphene aerogels can be controlled by enhancing the structural morphology. The obtained results is the contribution which provide the insights into recent developments concerning the design of carbon-based structures and their application.
Morphology of Graphene Aerogel as the Key Factor: Mechanical Properties Under Tension and Compression.
阅读:4
作者:Rozhnova Elizaveta, Baimova Julia
| 期刊: | Gels | 影响因子: | 5.300 |
| 时间: | 2024 | 起止号: | 2024 Dec 25; 11(1):3 |
| doi: | 10.3390/gels11010003 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
