Structural Behavior of Fibrous-Ferrocement Panel Subjected to Flexural and Impact Loads.

阅读:5
作者:Murali Gunasekaran, Amran Mugahed, Fediuk Roman, Vatin Nikolai, Raman Sudharshan N, Maithreyi Gundu, Sumathi Arunachalam
Ferrocement panels, while offering various benefits, do not cover instances of low and moderated velocity impact. To address this problem and to enhance the impact strength against low-velocity impact, a fibrous ferrocement panel is proposed and investigated. This study aims to assess the flexural and low-velocity impact response of simply supported ferrocement panels reinforced with expanded wire mesh (EWM) and steel fibers. The experimental program covered 12 different ferrocement panel prototypes and was tested against a three-point flexural load and falling mass impact test. The ferrocement panel system comprises mortar reinforced with 1% and 2% dosage of steel fibers and an EWM arranged in 1, 2, and 3 layers. For mortar preparation, a water-cement (w/c) ratio of 0.4 was maintained and all panels were cured in water for 28 days. The primary endpoints of the investigation are first crack and ultimate load capacity, deflection corresponding to first crack and ultimate load, ductility index, flexural strength, crack width at ultimate load, a number of impacts needed to induce crack commencement and failure, ductility ratio, and failure mode. The finding revealed that the three-layers of EWM inclusion and steel fibers resulted in an additional impact resistance improvement at cracking and failure stages of ferrocement panels. With superior ultimate load capacity, flexural strength, crack resistance, impact resistance, and ductile response, as witnessed in the experiment program, ferrocement panel can be a positive choice for many construction applications subjected to repeated low-velocity impacts.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。