Long-range spontaneous droplet self-propulsion on wettability gradient surfaces.

阅读:4
作者:Liu Chaoran, Sun Jing, Li Jing, Xiang Chenghao, Che Lufeng, Wang Zuankai, Zhou Xiaofeng
The directional and long-range droplet transportation is of great importance in microfluidic systems. However, it usually requires external energy input. Here we designed a wettability gradient surface that can drive droplet motion by structural topography. The surface has a wettability gradient range of over 150° from superhydrophobic to hydrophilic, which was achieved by etching silicon nanopillars and adjusting the area of hydrophilic silicon dioxide plane. We conducted force analysis to further reveal the mechanism for droplet self-propulsion, and found that the nanostructures are critical to providing a large driving force and small resistance force. Theoretical calculation has been used to analyze the maximal self-propulsion displacement on different gradient surfaces with different volumes of droplets. On this basis, we designed several surfaces with arbitrary paths, which achieved directional and long-range transportation of droplet. These results clarify a driving mechanism for droplet self-propulsion on wettability gradient surfaces, and open up new opportunities for long-range and directional droplet transportation in microfluidic system.

特别声明

1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。

2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。

3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。

4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。