BACKGROUND: PANoptosis has been identified as a robust inflammatory cell death pathway triggered upon host defense against invaded pathogens such as bacteria and viruses, however, pathogen-free tumor PANoptosis has not been achieved yet. Reactive oxygen and nitrogen species capable of inducing robust and diverse cell death pathways such as pyroptosis, apoptosis, and necroptosis are supposed to be the potential triggers for tumor PANoptosis by ultrasound (US)-controlled sono-piezodynamic therapy. METHODS: S-nitrosothiols (SNO)-zinc peroxide (ZnO(2))@cyclic dinucleotide (CDN)@mesoporous tetragonal barium titanate (mtBTO) nanoparticles (NZCB NPs) were synthesized by hydrothermal method with subsequent annealing, in situ growth, and finally surface functionalization. Scanning electron microscopy, transmission electron microscopy, X-ray diffraction, atomic force microscopy, Fourier transform infrared spectroscopy, and electron spin resonance were used for materials characterizations. Murine melanoma B16 cells are employed to investigate the in vitro US-initiated tumor PANoptosis by NZCB NPs. In vivo US-initiated tumor PANoptosis was investigated on B16 tumor-bearing C57BL/6J mice. RESULTS: A "boiling-bubbling" strategy is developed to endow the piezoelectric BTO nanocatalysts, with mesoporous architecture, which enables the encapsulation of the immune-agonist CDN (9.4Â wt%) to initiate innate immunity of the host. Then, SNO-functionalized ZnO(2) was further employed to cap the mesoporous nanocatalysts, forming multifunctional piezocatalytic NZCB NPs. Under US irradiation, intracellular massive reactive oxygen and nitrogen species such as superoxide anion radicals, nitric oxide (NO), and peroxynitrite (ONOO(-)) could be produced from the piezoelectric NZCB NPs, which, synergized with CDN-triggered antitumoral immunity, lead to highly immunogenic tumor PANoptosis by NZCB NPs through the tumor microenvironment remodeling. Intratumoral injection of NZCB NPs leads to substantial tumor PANoptosis with immune potentiation, ultimately destroying the tumor xenografts effectively. CONCLUSION: The present work presents the mesostructure design of piezocatalytic nanomaterials and the crosstalk between oxidative stress and antitumor immunity within the tumor, facilitating promising tumor PANoptosis by nanocatalytic oxidation with high effectiveness and biocompatibility.
Ultrasound initiated tumor catalytic PANoptosis by mesoporous piezoelectric nanocatalysts.
阅读:12
作者:Xu Xuan-Shou, Ren Wei-Wei, Zhang Heng, Huo Dong-Liang, Lyu Qi, Zhan Mei-Xiao, Xu Hui-Xiong, Wang Li-Ying, Huo Min-Feng, Shi Jian-Lin
| 期刊: | Military Medical Research | 影响因子: | 22.900 |
| 时间: | 2025 | 起止号: | 2025 Jul 30; 12(1):40 |
| doi: | 10.1186/s40779-025-00629-9 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
