Identification of Serum Biomarkers for Gastric Cancer Diagnosis Using a Human Proteome Microarray.

阅读:10
作者:Yang Lina, Wang Jingfang, Li Jianfang, Zhang Hainan, Guo Shujuan, Yan Min, Zhu Zhenggang, Lan Bin, Ding Youcheng, Xu Ming, Li Wei, Gu Xiaonian, Qi Chong, Zhu Heng, Shao Zhifeng, Liu Bingya, Tao Sheng-Ce
We aimed to globally discover serum biomarkers for diagnosis of gastric cancer (GC). GC serum autoantibodies were discovered and validated using serum samples from independent patient cohorts encompassing 1,401 participants divided into three groups, i.e. healthy, GC patients, and GC-related disease group. To discover biomarkers for GC, the human proteome microarray was first applied to screen specific autoantibodies in a total of 87 serum samples from GC patients and healthy controls. Potential biomarkers were identified via a statistical analysis protocol. Targeted protein microarrays with only the potential biomarkers were constructed and used to validate the candidate biomarkers using 914 samples. To provide further validation, the abundance of autoantibodies specific to the biomarker candidates was analyzed using enzyme-linked immunosorbent assays. Receiver operating characteristic curves were generated to evaluate the diagnostic accuracy of the serum biomarkers. Finally, the efficacy of prognosis efficacy of the final four biomarkers was evaluated by analyzing the clinical records. The final panel of biomarkers consisting of COPS2, CTSF, NT5E, and TERF1 provides high diagnostic power, with 95% sensitivity and 92% specificity to differentiate GC patients from healthy individuals. Prognosis analysis showed that the panel could also serve as independent predictors of the overall GC patient survival. The panel of four serum biomarkers (COPS2, CTSF, NT5E, and TERF1) could serve as a noninvasive diagnostic index for GC, and the combination of them could potentially be used as a predictor of the overall GC survival rate.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。