Self-powered artificial vibrissal system with anemotaxis behavior.

阅读:6
作者:Qi Meng, Ren Yanyun, Sun Tao, Xu Runze, Lv Ziyu, Zhou Ye, Han Su-Ting
Anemotaxis behaviors inspired by rats have tremendous potential in efficiently processing perilous search and rescue operations in the physical world, but there is still lack of hardware components that can efficiently sense, encode, and recognize wind signal. Here, we report an artificial vibrissal system consisting of a self-powered carbon black sensor and threshold-switching HfO(2) memristor. By integrating a forming HfO(2) memristor with a self-powered angle-detecting hydro-voltaic sensor, the spiking sensory neuron can synchronously perceive and encode wind, humidity, and temperature signals into spikes with different frequencies. Furthermore, to validate the self-powered artificial vibrissal system with anemotaxis behavior, a robotic car with equipped artificial vibrissal system tracks trajectory toward the air source has been demonstrated. This design not only addresses the high energy consumption and low computing issues of traditional sensory system but also introduces the multimode functionalities, therefore promoting the construction of neuromorphic perception systems for neurorobotics.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。