Conventional reconstruction algorithms (e.g., delay-and-sum) used in photoacoustic imaging (PAI) provide a fast solution while many artifacts remain, especially for limited-view with ill-posed problem. In this paper, we propose a new convolutional neural network (CNN) framework Y-Net: a CNN architecture to reconstruct the initial PA pressure distribution by optimizing both raw data and beamformed images once. The network combines two encoders with one decoder path, which optimally utilizes more information from raw data and beamformed image. We compared our result with some ablation studies, and the results of the test set show better performance compared with conventional reconstruction algorithms and other deep learning method (U-Net). Both in-vitro and in-vivo experiments are used to validated our method, which still performs better than other existing methods. The proposed Y-Net architecture also has high potential in medical image reconstruction for other imaging modalities beyond PAI.
Y-Net: Hybrid deep learning image reconstruction for photoacoustic tomography in vivo.
阅读:6
作者:Lan Hengrong, Jiang Daohuai, Yang Changchun, Gao Feng, Gao Fei
| 期刊: | Photoacoustics | 影响因子: | 6.800 |
| 时间: | 2020 | 起止号: | 2020 Jun 20; 20:100197 |
| doi: | 10.1016/j.pacs.2020.100197 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
