The electrocatalytic nitrite reduction (NO(2)RR) converts nitrogen-containing pollutants to high-value ammonia (NH(3)) under ambient conditions. However, its multiple intermediates and multielectron coupled proton transfer process lead to low activity and NH(3) selectivity for the existing electrocatalysts. Herein, we synthesize a solid-solution copper-zinc cyanamide (Cu(0.8)Zn(0.2)NCN) with localized structure distortion and tailored surface electrostatic potential, allowing for the asymmetric binding of NO(2)(-). It exhibits outstanding NO(2)RR performance with a Faradaic efficiency of â¼100% and an NH(3) yield of 22 mg h(-1) cm(-2), among the best for such a process. Theoretical calculations and in situ spectroscopic measurements demonstrate that Cu-Zn sites coordinated with linear polarized [NCN](2-) could transform symmetric [Cu-O-N-O-Cu] in CuNCN-NO(2)(-) to a [Cu-N-O-Zn] asymmetric configuration in Cu(0.8)Zn(0.2)NCN-NO(2)(-), thus enhancing adsorption and bond cleavage. A paired electro-refinery with the Cu(0.8)Zn(0.2)NCN cathode reaches 2000 mA cm(-2) at 2.36 V and remains fully operational at industrial-level 400 mA cm(-2) for >140 h with a NH(3) production rate of â¼30 mg(NH3) h(-1) cm(-2). Our work opens a new avenue of tailoring surface electrostatic potentials using a solid-solution strategy for advanced electrocatalysis.
A Copper-Zinc Cyanamide Solid-Solution Catalyst with Tailored Surface Electrostatic Potentials Promotes Asymmetric N-Intermediate Adsorption in Nitrite Electroreduction.
阅读:5
作者:Wang Jiacheng Jayden, Bui Huong T D, Wang Xunlu, Lv Zhuoran, Hu Huashuai, Kong Shuyi, Wang Zhiqiang, Liu Lijia, Chen Wei, Bi Hui, Yang Minghui, Brinck Tore, Wang Jiacheng, Huang Fuqiang
| 期刊: | Journal of the American Chemical Society | 影响因子: | 15.600 |
| 时间: | 2025 | 起止号: | 2025 Mar 5; 147(9):8012-8023 |
| doi: | 10.1021/jacs.5c00837 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
