Mechanical Improvement of Graphene Oxide Film via the Synergy of Intercalating Highly Oxidized Graphene Oxide and Borate Bridging.

阅读:4
作者:Quan Yiwei, He Peng, Ding Guqiao
Converting graphene oxide (GO) nanosheets into high-performance paper-like GO films has significant practical value. However, it is still challenging because the mechanical properties significantly decreased when the nanosheets are assembled into films. The simultaneous attainment of high tensile strength, high modulus, and relatively high toughness remains a formidable challenge. Here, we demonstrated an effective approach involving the incorporation of high oxidized graphene oxide (HOGO) and borate, to enhance the mechanical properties of GO films. X-ray photoelectron spectroscopy (XPS) measurements and thermogravimetric analysis-differential scanning calorimetry (TG-DSC) revealed the synergistic effects of hydrogen and covalent bonding from HOGO and borate, respectively. Additionally, wide-angle X-ray scattering (WAXS) analysis indicated a notable enhancement in the orientation of the GO in the resulting films, characterized by the Herman's orientation factor (ƒ = 0.927), attributable to the combined action of hydrogen and covalent bonding. The borate-crosslinked GO+HOGO films exhibited exceptional mechanical properties, with an impressive strength (417.2 MPa), high modulus (43.8 GPa), and relatively high toughness (2.5 MJ m(-3)). This innovative assembly strategy presents a promising avenue for achieving desirable mechanical properties, thereby enhancing the potential for commercial applications.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。