Foundation models are highly versatile neural-network architectures capable of processing different data types, such as text and images, and generalizing across various tasks like classification and generation. Inspired by this success, we propose Foundation Neural-Network Quantum States (FNQS) as an integrated paradigm for studying quantum many-body systems. FNQS leverage key principles of foundation models to define variational wave functions based on a single, versatile architecture that processes multimodal inputs, including spin configurations and Hamiltonian physical couplings. Unlike specialized architectures tailored for individual Hamiltonians, FNQS can generalize to physical Hamiltonians beyond those encountered during training, offering a unified framework adaptable to various quantum systems and tasks. FNQS enable the efficient estimation of quantities that are traditionally challenging or computationally intensive to calculate using conventional methods, particularly disorder-averaged observables. Furthermore, the fidelity susceptibility can be easily obtained to uncover quantum phase transitions without prior knowledge of order parameters. These pretrained models can be efficiently fine-tuned for specific quantum systems. The architectures trained in this paper are publicly available at https://huggingface.co/nqs-models , along with examples for implementing these neural networks in NetKet.
Foundation neural-networks quantum states as a unified Ansatz for multiple hamiltonians.
阅读:4
作者:Rende Riccardo, Viteritti Luciano Loris, Becca Federico, Scardicchio Antonello, Laio Alessandro, Carleo Giuseppe
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 Aug 5; 16(1):7213 |
| doi: | 10.1038/s41467-025-62098-x | ||
特别声明
1、本文转载旨在传播信息,不代表本网站观点,亦不对其内容的真实性承担责任。
2、其他媒体、网站或个人若从本网站转载使用,必须保留本网站注明的“来源”,并自行承担包括版权在内的相关法律责任。
3、如作者不希望本文被转载,或需洽谈转载稿费等事宜,请及时与本网站联系。
4、此外,如需投稿,也可通过邮箱info@biocloudy.com与我们取得联系。
