Multifunctional terahertz (THz) devices in transmission mode are highly desired in integration-optics applications, but conventional devices are bulky in size and inefficient. While ultra-thin multifunctional THz devices are recently demonstrated based on reflective metasurfaces, their transmissive counterparts suffer from severe limitations in efficiency and functionality. Here, based on high aspect-ratio silicon micropillars exhibiting wide transmission-phase tuning ranges with high transmission-amplitudes, a set of dielectric metasurfaces is designed and fabricated to achieve efficient spin-multiplexed wavefront controls on THz waves. As a benchmark test, the photonic-spin-Hall-effect is experimentally demonstrated with a record high absolute efficiency of 92% using a dielectric metasurface encoded with geometric phases only. Next, spin-multiplexed controls on circularly polarized THz beams (e.g., anomalous refraction and focusing) are experimentally demonstrated with experimental efficiency reaching 88%, based on a dielectric meta-device encoded with both spin-independent resonant phases and spin-dependent geometric phases. Finally, high-efficiency spin-multiplexed dual holographic images are experimentally realized with the third meta-device encoded with both resonant and geometric phases. Both near-field and far-field measurements are performed to characterize these devices, yielding results in agreement with full-wave simulations. The study paves the way to realize multifunctional, high-performance, and ultra-compact THz devices for applications in biology sensing, communications, and so on.
Bifunctional Manipulation of Terahertz Waves with High-Efficiency Transmissive Dielectric Metasurfaces.
阅读:6
作者:Wang Zhuo, Yao Yao, Pan Weikang, Zhou Haoyang, Chen Yizhen, Lin Jing, Hao Jiaming, Xiao Shiyi, He Qiong, Sun Shulin, Zhou Lei
| 期刊: | Advanced Science | 影响因子: | 14.100 |
| 时间: | 2023 | 起止号: | 2023 Feb;10(4):e2205499 |
| doi: | 10.1002/advs.202205499 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
