Caenorhabditis elegans serves as a common model for investigating neural dynamics and functions of biological neural networks. Data-driven approaches have been employed in reconstructing neural dynamics. However, challenges remain regarding the curse of high-dimensionality and stochasticity in realistic systems. In this study, we develop a deep neural network (DNN) approach to reconstruct the neural dynamics of C. elegans and study neural mechanisms for locomotion. Our model identifies two limit cycles in the neural activity space: one underpins basic pirouette behavior, essential for navigation, and the other introduces extra Ω turns. The combination of two limit cycles elucidates predominant locomotion patterns in neural imaging data. The corresponding energy landscape explains the switching strategies between two limit cycles, quantitatively, and provides testable predictions on neural functions and circuit roles. Our work provides a general approach to study neural dynamics by combining imaging data and stochastic modeling.
Revealing neural dynamical structure of C. elegans with deep learning.
阅读:5
作者:Zhou Ruisong, Yu Yuguo, Li Chunhe
| 期刊: | iScience | 影响因子: | 4.100 |
| 时间: | 2024 | 起止号: | 2024 Apr 17; 27(5):109759 |
| doi: | 10.1016/j.isci.2024.109759 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
