AaABCG40 Enhances Artemisinin Content and Modulates Drought Tolerance in Artemisia annua

AaABCG40 提高青蒿素含量并调节青蒿的抗旱性

阅读:7
作者:Xueqing Fu, Hang Liu, Danial Hassani, Bowen Peng, Xin Yan, Yuting Wang, Chen Wang, Ling Li, Pin Liu, Qifang Pan, Jingya Zhao, Hongmei Qian, Xiaofen Sun, Kexuan Tang

Abstract

The phytohormone Abscisic acid (ABA) regulates plant growth, development, and responses to abiotic stresses, including senescence, seed germination, cold stress and drought. Several kinds of researches indicate that exogenous ABA can enhance artemisinin content in A. annua. Some transcription factors related to ABA signaling are identified to increase artemisinin accumulation through activating the artemisinin synthase genes. However, no prior study on ABA transporter has been performed in A. annua. Here, we identified a pleiotropic drug resistance (PDR) transporter gene AaPDR4/AaABCG40 from A. annua. AaABCG40 was expressed mainly in roots, leaves, buds, and trichomes. GUS activity is primarily observed in roots and the vascular tissues of young leaves in proAaABCG40: GUS transgenic A. annua plants. When AaABCG40 was transferred into yeast AD12345678, yeasts expressing AaABCG40 accumulated more ABA than the control. The AaABCG40 overexpressing plants showed higher artemisinin content and stronger drought tolerance. Besides, the expression of CYP71AV1 in OE-AaABCG40 plants showed more sensitivity to exogenous ABA than that in both wild-type and iAaABCG40 plants. According to these results, they strongly suggest that AaABCG40 is involved in ABA transport in A. annua.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。