Dynamically controlling electromagnetic waves at will is highly desired in many applications, but most previously realized mechanically reconfigurable metasurfaces are of restricted wave-control capabilities due to the limited tuning ranges of structural properties (e.g., lattice constant or meta-atoms). Here, we present mechanically reconfigurable metasurfaces in which both lattice constants and local reflection phases of constitutional meta-atoms can be synchronously controlled based on the kirigami rotation transformation, thereby exhibiting extended tuning ranges and thus wave-control capabilities. In particular, such metasurfaces can exhibit continuously varied and even re-formed reflection-phase profiles along with the kirigami rotation transformation, serving as ideal platforms to achieve reconfigurable beam steering in pre-designed manners. Using this concept, we design and fabricate two kirigami metasurfaces, working as a beam flipper and as a beam splitter for microwaves, respectively, and experimentally characterize their wave-manipulation functionalities. Experimental results are in good agreement with full-wave simulations. The proposed idea is so general that it can be applied to realize reconfigurable metasurfaces with different materials/configurations or in high frequency regimes, for controlling electromagnetic waves and other classical waves (e.g., acoustic waves).
Abnormal beam steering with kirigami reconfigurable metasurfaces.
阅读:8
作者:Jiang Guobang, Wang Yingying, Zhang Ziyu, Pan Weikang, Chen Yizhen, Wang Yang, Chen Xiangzhong, Song Enming, Huang Gaoshan, He Qiong, Sun Shulin, Cui Jizhai, Zhou Lei, Mei Yongfeng
| 期刊: | Nature Communications | 影响因子: | 15.700 |
| 时间: | 2025 | 起止号: | 2025 Feb 15; 16(1):1660 |
| doi: | 10.1038/s41467-025-56211-3 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
