Abnormal beam steering with kirigami reconfigurable metasurfaces.

阅读:8
作者:Jiang Guobang, Wang Yingying, Zhang Ziyu, Pan Weikang, Chen Yizhen, Wang Yang, Chen Xiangzhong, Song Enming, Huang Gaoshan, He Qiong, Sun Shulin, Cui Jizhai, Zhou Lei, Mei Yongfeng
Dynamically controlling electromagnetic waves at will is highly desired in many applications, but most previously realized mechanically reconfigurable metasurfaces are of restricted wave-control capabilities due to the limited tuning ranges of structural properties (e.g., lattice constant or meta-atoms). Here, we present mechanically reconfigurable metasurfaces in which both lattice constants and local reflection phases of constitutional meta-atoms can be synchronously controlled based on the kirigami rotation transformation, thereby exhibiting extended tuning ranges and thus wave-control capabilities. In particular, such metasurfaces can exhibit continuously varied and even re-formed reflection-phase profiles along with the kirigami rotation transformation, serving as ideal platforms to achieve reconfigurable beam steering in pre-designed manners. Using this concept, we design and fabricate two kirigami metasurfaces, working as a beam flipper and as a beam splitter for microwaves, respectively, and experimentally characterize their wave-manipulation functionalities. Experimental results are in good agreement with full-wave simulations. The proposed idea is so general that it can be applied to realize reconfigurable metasurfaces with different materials/configurations or in high frequency regimes, for controlling electromagnetic waves and other classical waves (e.g., acoustic waves).

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。