Ultra-Confined Phonon Polaritons and Strongly Coupled Microcavity Exciton Polaritons in Monolayer MoSi(2)N(4) and WSi(2)N(4).

阅读:5
作者:Zhang Juan, Xia Yujie, Peng Lei, Zhang Yiming, Li Ben, Shu Le, Cen Yan, Zhuang Jun, Zhu Heyuan, Zhan Peng, Zhang Hao
The 2D semiconductors are an ideal platform for exploration of bosonic fluids composed of coupled photons and collective excitations of atoms or excitons, primarily due to large excitonic binding energies and strong light-matter interaction. Based on first-principles calculations, it is demonstrated that the phonon polaritons formed by two infrared-active phonon modes in monolayer MoSi(2)N(4) and WSi(2)N(4) possess ultra-high confinement factors of around ≈10(5) and 10(3), surpassing those of conventional polaritonic thin-film materials by two orders of magnitude. It is observed that the first bright exciton possesses a substantial binding energies of 750 and 740 meV in these two monolayers, with the radiative recombination lifetimes as long as 25 and 188 ns, and the Rabi splitting of the formed cavity-exciton polaritons reaching 373 and 321 meV, respectively. The effective masses of the cavity exciton polaritons are approximately 10(-5)m(e), providing the potential for high-temperature quantum condensation. The ultra-confined and ultra-low-loss phonon polaritons, as well as strongly-coupled cavity exciton polaritons with ultra-small polaritonic effective masses in these two monolayers, offering the flexible control of light at the nanoscale, probably leading to practical applications in nanophotonics, meta-optics, and quantum materials.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。