Conclusion
Luteolin emerges as a promising lead compound for the clinical therapy of colitis by virtue of its ability to ameliorate DSS-induced colitis, antagonize IKKα/β, suppress NF-κB signaling, and impede macrophage activation and migration.
Methods
Our investigation encompassed in vivo assessments of luteolin's therapeutic potential against DSS-induced colitis through rigorous histopathological examination and biochemical analyses. Furthermore, we scrutinized luteolin's anti-inflammatory prowess in vitro using lipopolysaccharide (LPS)-stimulated RAW264.7 cells and primary peritoneal macrophages. Additionally, we quantitatively evaluated the impact of luteolin on C-C motif chemokine ligand 2 (CCL2)-induced macrophage migration employing Transwell and Zigmond chambers. Furthermore, cellular thermal shift assay (CETSA), drug affinity responsive target stability (DARTS) assay, and molecular docking were employed to identify potential therapeutic targets of luteolin and investigate their binding sites and interaction patterns.
Results
Luteolin demonstrated therapeutic potential against DSS-induced colitis by ameliorating colitis symptoms, restoring intestinal barrier integrity, and inhibiting proinflammatory cytokine production in the colonic tissues. Moreover, luteolin demonstrated robust anti-inflammatory activity in vitro, in lipopolysaccharide (LPS)-stimulated RAW264.7 cells and primary peritoneal macrophages. Notably, luteolin suppressed the phosphorylation of IKKα/β, IκBα, and p65, along with preventing IκBα degradation in LPS-treated RAW264.7 cells and peritoneal macrophages. Furthermore, luteolin impaired the migratory behavior of RAW264.7 cells and peritoneal macrophages, as evidenced by reduced migration distance and velocity of luteolin-treated macrophages. Mechanistically, luteolin was found to antagonize IKKα/β, subsequently inhibiting IKKα/β phosphorylation and the activation of NF-κB signaling.
