BACKGROUND: There are plenty of studies investigating the disparity of payer status in accessing to care. However, most studies are either disease-specific or cohort-specific. Quantifying the disparity from the level of facility through a large controlled study are rare. This study aims to examine how the payer status affects patient hospitalization from the perspective of a facility. METHODS: We extracted all patients with visiting record in a medical center between 5/1/2009-4/30/2014, and then linked the outpatient and inpatient records three year before target admission time to patients. We conduct a retrospective observational study using a conditional logistic regression methodology. To control the illness of patients with different diseases in training the model, we construct a three-dimension variable with data stratification technology. The model is validated on a dataset distinct from the one used for training. RESULTS: Patients covered by private insurance or uninsured are less likely to be hospitalized than patients insured by government. For uninsured patients, inequity in access to hospitalization is observed. The value of standardized coefficients indicates that government-sponsored insurance has the greatest impact on improving patients' hospitalization. CONCLUSION: Attention is needed on improving the access to care for uninsured patients. Also, basic preventive care services should be enhanced, especially for people insured by government. The findings can serve as a baseline from which to measure the anticipated effect of measures to reduce disparity of payer status in hospitalization.
The impact of payer status on hospital admissions: evidence from an academic medical center.
阅读:3
作者:Zhao Yanying, Paschalidis Ioannis Ch, Hu Jianqiang
| 期刊: | BMC Health Services Research | 影响因子: | 3.000 |
| 时间: | 2021 | 起止号: | 2021 Sep 7; 21(1):930 |
| doi: | 10.1186/s12913-021-06886-3 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
