Small molecule screen identifies pyrimethamine as an inhibitor of NRF2-driven esophageal hyperplasia

小分子筛选鉴定出乙胺嘧啶是 NRF2 驱动的食管增生的抑制剂

阅读:7
作者:Chorlada Paiboonrungruang, Zhaohui Xiong, David Lamson, Yahui Li, Brittany Bowman, Julius Chembo, Caizhi Huang, Jianying Li, Eric W Livingston, Jon E Frank, Vivian Chen, Yong Li, Bernard Weissman, Hong Yuan, Kevin P Williams, M Ben Major, Xiaoxin Chen

Conclusion

We have identified and validated pyrimethamine as an NRF2 inhibitor that may be rapidly tested in the clinic for NRF2high ESCC.

Objective

NRF2 is a master transcription factor that regulates the stress response. NRF2 is frequently mutated and activated in human esophageal squamous cell carcinoma (ESCC), which drives resistance to chemotherapy and radiation therapy. Therefore, a great need exists for NRF2 inhibitors for targeted therapy of NRF2high ESCC. Design: We performed high-throughput screening of two compound libraries from which hit compounds were further validated in human ESCC cells and a genetically modified mouse model. The mechanism of action of one compound was explored by biochemical assays.

Results

Using high-throughput screening of two small molecule compound libraries, we identified 11 hit compounds as potential NRF2 inhibitors with minimal cytotoxicity at specified concentrations. We then validated two of these compounds, pyrimethamine and mitoxantrone, by demonstrating their dose- and time-dependent inhibitory effects on the expression of NRF2 and its target genes in two NRF2Mut human ESCC cells (KYSE70 and KYSE180). RNAseq and qPCR confirmed the suppression of global NRF2 signaling by these two compounds. Mechanistically, pyrimethamine reduced NRF2 half-life by promoting NRF2 ubiquitination and degradation in KYSE70 and KYSE180 cells. Expression of an Nrf2E79Q allele in mouse esophageal epithelium (Sox2CreER;LSL-Nrf2E79Q/+) resulted in an NRF2high phenotype, which included squamous hyperplasia, hyperkeratinization, and hyperactive glycolysis. Treatment with pyrimethamine (30 mg/kg/day, p.o.) suppressed the NRF2high esophageal phenotype with no observed toxicity.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。