Continuity Scaling: A Rigorous Framework for Detecting and Quantifying Causality Accurately.

阅读:4
作者:Ying Xiong, Leng Si-Yang, Ma Huan-Fei, Nie Qing, Lai Ying-Cheng, Lin Wei
Data-based detection and quantification of causation in complex, nonlinear dynamical systems is of paramount importance to science, engineering, and beyond. Inspired by the widely used methodology in recent years, the cross-map-based techniques, we develop a general framework to advance towards a comprehensive understanding of dynamical causal mechanisms, which is consistent with the natural interpretation of causality. In particular, instead of measuring the smoothness of the cross-map as conventionally implemented, we define causation through measuring the scaling law for the continuity of the investigated dynamical system directly. The uncovered scaling law enables accurate, reliable, and efficient detection of causation and assessment of its strength in general complex dynamical systems, outperforming those existing representative methods. The continuity scaling-based framework is rigorously established and demonstrated using datasets from model complex systems and the real world.

特别声明

1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。

2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。

3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。

4、投稿及合作请联系:info@biocloudy.com。