Hydrogel microspheres hold great promise as scaffolds for bone repair. Their hydrated matrix, biocompatibility, and functional properties make them an attractive choice in regenerative medicine. However, the irregularity of defect requires shape adaptability of the microspheres. Additionally, there is still room for improvement regarding the component of the microspheres to achieve sufficient bioactivity. Here, we prepare multi-bioactive microspheres composed of methacrylated silk fibroin (SFMA) via microfluidic electrospray. Magnesium ascorbyl phosphate (MAP) is encapsulated within the microspheres, whose sustained release facilitates angiogenesis and osteogenic differentiation. The microspheres are further coated with a polydopamine (PDA) layer, allowing them to assemble in situ into a scaffold that conforms to the non-uniform contours of bone defects. The photothermal conversion capability of PDA also provides mild photothermal stimulation to further promote bone regeneration. Based on the synergistic effects, our in vivo experiments demonstrated that the microsphere scaffold effectively promotes bone defect healing. Thus, this multi-bioactive scaffold offers a versatile strategy for bone repair with promising clinical potential.
Mussel-inspired multi-bioactive microsphere scaffolds for bone defect photothermal therapy.
阅读:4
作者:Ma Kaixuan, Yang Lei, Li Wenzhao, Chen Kai, Shang Luoran, Bai Yushu, Zhao Yuanjin
| 期刊: | Materials Today Bio | 影响因子: | 10.200 |
| 时间: | 2024 | 起止号: | 2024 Nov 23; 29:101363 |
| doi: | 10.1016/j.mtbio.2024.101363 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
