Mesoporous calcium sulfate-based bone cements (m-CSBC) were prepared by introducing mesoporous magnesium-calcium silicate (m-MCS) with specific surface area (410.9 m² g(-1)) and pore volume (0.8 cm³ g(-1)) into calcium sulfate hemihydrate (CSH). The setting time of the m-CSBC was longer with the increase of m-MCS content while compressive strength decreased. The degradation ratio of m-CSBC increased from 48.6 w% to 63.5 w% with an increase of m-MCS content after soaking in Tris-HCl solution for 84 days. Moreover, the m-CSBC containing m-MCS showed the ability to neutralize the acidic degradation products of calcium sulfate and prevent the pH from dropping. The apatite could be induced on m-CSBC surfaces after soaking in SBF for 7 days, indicating good bioactivity. The effects of the m-CSBC on vitamin D3 sustained release behaviours were investigated. It was found that the cumulative release ratio of vitamin D3 from the m-CSBC significantly increased with the increase of m-MCS content after soaking in PBS (pH = 7.4) for 25 days. The m-CSBC markedly improved the cell-positive responses, including the attachment, proliferation and differentiation of MC3T3-E1 cells, suggesting good cytocompatibility. Briefly, m-CSBC with good bioactivity, degradability and cytocompatibility might be an excellent biocement for bone regeneration.
In vitro degradability, bioactivity and primary cell responses to bone cements containing mesoporous magnesium-calcium silicate and calcium sulfate for bone regeneration.
阅读:4
作者:Ding Yueting, Tang Songchao, Yu Baoqing, Yan Yonggang, Li Hong, Wei Jie, Su Jiacan
| 期刊: | Journal of the Royal Society Interface | 影响因子: | 3.500 |
| 时间: | 2015 | 起止号: | 2015 Oct 6; 12(111):20150779 |
| doi: | 10.1098/rsif.2015.0779 | ||
特别声明
1、本页面内容包含部分的内容是基于公开信息的合理引用;引用内容仅为补充信息,不代表本站立场。
2、若认为本页面引用内容涉及侵权,请及时与本站联系,我们将第一时间处理。
3、其他媒体/个人如需使用本页面原创内容,需注明“来源:[生知库]”并获得授权;使用引用内容的,需自行联系原作者获得许可。
4、投稿及合作请联系:info@biocloudy.com。
